
Cachet: A Domain-Specific Language for Trustworthy Just-In-Time Compilers

Michael Smith
UC San Diego

Abhishek Sharma
UC San Diego

John Renner
UC San Diego

David Thien
UC San Diego

Sorin Lerner
UC San Diego

Fraser Brown
CMU

Hovav Shacham
UT Austin

Deian Stefan
UC San Diego

Abstract
Just-in-time (JIT) compilers face a tough task: chewing up
potentially-untrusted input and spitting out machine code
that’s at once fast, correct, and secure, working close-to-
the-metal with low-level primitives in a tight time budget.
Developers juggle complex invariants which generated code
must respect, which can easily shatter the system’s security
model when broken. Cachet, our domain-specific language
for JIT implementation, makes these invariants explicit and
statically-verified. Our toolchain compiles Cachet code both
to the SMT-solvable Boogie verification language and to C++
suitable for embedding in host applications and language
runtimes. We are evaluating Cachet by reimplementing and
verifying components of Firefox’s JavaScript JIT.

Keywords secure compilation, domain-specific languages,
just-in-time compilation

1 Introduction
The security of modern web browsers hinges on securely
compiling and running enormous quantities of untrusted
code, primarily JavaScript. Because JavaScript is such a dy-
namic language, browsers have adopted just-in-time (JIT)
compilation techniques of increasing complexity in their
JavaScript engines [2, 3, 11], to accommodate the perfor-
mance demands of today’s web applications. Browser JITs
have been and continue to be an unending fount of ex-
ploitable bugs, to the point that Microsoft’s Edge browser
recently introduced a heightened security mode which dis-
ables JIT compilation entirely [10].
Securing these real-world just-in-time compilers against

untrusted code presents a daunting challenge. They’re sprawl-
ing black boxes that string arbitrarymachine code together at
the lowest level. Writing a secure production JIT requires not
only writing fast, efficient, bug-free code, but writing code
that produces code meeting all those properties as well. A
clobbered register here, an insufficient type guard or bounds
check there, and the security of the whole system comes
tumbling down. Generated code must adhere to invariants
that, currently, exist primarily in JIT developers’ heads.

PriSC’23, January 21, 2023, Boston, MA, USA
2023.

Codifying these invariants and checking that they’re up-
held would be a first step toward securing the JIT. Some
properties could be checked at runtime, by inspecting the
generated code or intermediate compiler data structures. Cy-
cles spent on runtime checks are cycles not spent running
code, though, and since JIT compilation is ultimately a perfor-
mance optimization, this limits the number and complexity
of runtime checks that can feasibly be turned on at once. An
ideal system would prove these invariants statically, offline,
on the developers’ machines and not the users’.
The production JIT engines we’re interested in securing

exist in a highly competitive ecosystem and have a fast-paced
development model, so any proposed solution can only put
so much drag on engineering velocity. Definitions of the
intermediate bytecode languages in Firefox’s JavaScript JIT
have averaged a change every two days over the past two
years [7–9]. Approaches requiring large auxiliary proofs
would struggle to keep up and impose an untenable mainte-
nance burden.

This also means that a solution must support partial, grad-
ual specification and verification of the JIT system. A whole-
sale rewrite or proof effort would find itself woefully out of
date by the time of its completion. To keep up with the mov-
ing target, one would need to start with a slice of the JIT and
expand outward chunk by chunk, integrating intermediate
results back into the production system and incrementally
tightening invariants. Then maximizing embeddability and
minimizing friction in interoperating with surrounding un-
verified code should be priorities.

Finally, we argue that a solution for implementing a main-
tainable verified JIT should look less like a proof system
and more like a systems language: something familiar to the
engineers already responsible for building and caring for
the engine, and built on technologies they can hack on as
needed. As much as possible, maintaining the JIT invariants
should not be a separate process from maintaining the JIT
implementation.

With this in mind, we present Cachet, a work-in-progress
domain-specific language and toolchain which strives to
meet these requirements. Cachet resembles a modern sys-
tems language (taking syntactic cues from Rust), but with
first-class constructs for building secure compilers: express-
ing code transformations, control flow in dynamically-generated

1



PriSC’23, January 21, 2023, Boston, MA, USA Smith, Sharma, Renner, Thien, Lerner, Brown, Shacham, and Stefan

1 ir CacheIR {
2 // Bail out to the JavaScript interpreter if the given

value is not null or undefined.
3 op GuardIsNullOrUndefined(valueId: ValueId);
4 /* ... */
5 }
6
7 ir MASM {
8 // Test whether the JavaScript value is `null `.
9 op BranchTestNull(cond: Condition , valueReg: ValueReg ,

label branch: MASM);
10 // Test whether the JavaScript value is `undefined `.
11 op BranchTestUndefined(cond: Condition ,

valueReg: ValueReg , label branch: MASM);
12 /* ... */
13 }

Figure 1. Defining some SpiderMonkey IRs in Cachet.

1 compiler CacheIRCompiler for CacheIR emits MASM {
2 op GuardIsNullOrUndefined(valueId: ValueId) {
3 let valueReg = CacheIRCompiler :: useValueId(valueId);
4
5 // Create a bail -out path back out the JavaScript

interpreter.
6 CacheIRCompiler :: addFailurePath(out label failure);
7
8 label success: MASM;
9 // Skip to `success ` if the value is `null `.
10 emit MASM:: BranchTestNull(Condition ::Equal , valueReg ,

success);
11 // Bail out if the value is not `undefined `, either.
12 emit MASM:: BranchTestUndefined(Condition ::NotEqual ,

valueReg , failure);
13 // Mark the label `success ` at the location following

the branch instructions.
14 bind success;
15 }
16 /* ... */
17 }

Figure 2. Defining a compiler from CacheIR to MASM.

1 interpreter MASMInterpreter interprets MASM {
2 op BranchTestNull(cond: Condition , valueReg: ValueReg ,

label branch: MASM) {
3 let value = MASM:: getValue(valueReg);
4 if cond == Condition ::Equal {
5 if Value:: isNull(value) {
6 goto branch;
7 }
8 } else if cond == Condition :: NotEqual {
9 if !Value:: isNull(value) {
10 goto branch;
11 }
12 } else {
13 assert false;
14 }
15 }
16 /* ... */
17 }

Figure 3. Defining an interpreter for MASM instructions.

code, and invariants in the form of statically-checked asser-
tions. These assertions are checked not only against the
compiler code, but also against the possible code the com-
piler can generate, given the definition of an interpreter for
the target language (also written in Cachet). Cachet code
can be extracted to efficient C++ by our toolchain, making it
highly embeddable; external functions can be called directly,
and gradually specified as needed or ported into Cachet
themselves. We’re currently evaluating Cachet by using it
to write verified versions of components of SpiderMonkey,
Firefox’s JavaScript JIT: a compiler for a subset of CacheIR,
SpiderMonkey’s internal inline cache bytecode, as well as a
verified range analysis for JavaScript (building on previous
work [1]).

2 The Cachet DSL

1 struct NativeObject <: Object;
2
3 impl NativeObject {
4 fn getFixedSlot(nativeObject: NativeObject , slot: UInt32)

-> Value {
5 let shape = Object :: shapeOf(nativeObject);
6 assert slot < Shape:: numFixedSlots ();
7 unsafe { NativeObject :: getFixedSlotUnchecked(

nativeObject , slot) }
8 }
9 unsafe fn getFixedSlotUnchecked(

nativeObject: NativeObject , slot: UInt32) -> Value;
10 /* ... */
11 }

Figure 4. Wrapping an unsafe memory read with a statically-asserted
bounds check.

We introduce a number of features of the Cachet DSL,
using examples from our implementation of a verified com-
piler for CacheIR, an internal bytecode instruction set within
SpiderMonkey. These CacheIR instructions are compiled to
MacroAssembler (MASM), a SpiderMonkey-specific cross-
platform assembly languagewhich is specialized into platform-
specific machine code further along the pipeline.
In Figure 1, we define these two IRs, CacheIR and MASM,

and the signatures of their instructions. In Figure 2, we define
a compilerwhich lowers CacheIR instructions to sequences
of MASM instructions. The MASM instructions are appended
to the instruction stream using Cachet’s emit statement.
Control-flow labels are declared and bound (with the bind
statement) to points in the outgoing MASM instruction stream.
These labels can be passed as inputs to MASM instructions like
the branching tests in the example. Figure 3 shows the defi-
nition of a MASM interpreter which implements these branch
instructions, using the Cachet goto statement to transfer
control to the passed-in labels if the test results indicate
the branches should be followed, and asserting that the in-
struction is only used with supported Condition arguments.
The MASMInterpreter translates from MASM instructions to
higher-level operations on types in the JavaScript engine. In
Figure 4, we specify one such operation, wrapping an unsafe
memory read on NativeObjects performed by an opaque
external function with a statically-checked assertion that the
read is within-bounds for the object.
Given a chain of one or more compilation passes like

in Figure 2 and an interpreter like in Figure 3, the Cachet
toolchain verifies whether assertions like in Figure 4 can
be violated for any inputs to any code possibly produced
by the compiler, when interpreted by the given interpreter.
This is accomplished by extracting a specially-structured
Boogie [6] program from the input Cachet source code and
posing it to the Corral [5] solver as a Reachability Modulo
Theories (RMT) problem [4]. To make the solver converge
despite the multiple levels of indirection at play, the Cachet
toolchain (a) analyzes the potential control flow between
emitted instructions and bound labels in the compiler, and
(b) uses the results of this analysis pass to generate a version
of the interpreter specialized to the control-flow structure of
code generated by that compiler.

2



Cachet PriSC’23, January 21, 2023, Boston, MA, USA

References
[1] Fraser Brown, John Renner, Andres Nötzli, Sorin Lerner, Hovav

Shacham, and Deian Stefan. 2020. Towards a verified range analysis
for JavaScript JITs. In Proceedings of the 41st ACM SIGPLAN Conference
on Programming Language Design and Implementation. 135–150.

[2] Jan de Mooij. 2020. Warp: Improved JS performance
in Firefox 83. https://hacks.mozilla.org/2020/11/
warp-improved-js-performance-in-firefox-83/

[3] Jakob Gruber, Leszek Swirski, and Toon Verwaest.
2022. Maglev. https://docs.google.com/document/d/
13CwgSL4yawxuYg3iNlM-4ZPCB8RgJya6b8H_E2F-Aek/edit

[4] Akash Lal and Shaz Qadeer. 2013. Reachability Modulo Theories.
In 7th International workshop on Reachability Problems (Invited Pa-
per) (7th international workshop on reachability problems (invited
paper) ed.). https://www.microsoft.com/en-us/research/publication/
reachability-modulo-theories/

[5] Akash Lal, Shaz Qadeer, and Shuvendu Lahiri. 2012. Corral:
A Solver for Reachability Modulo Theories. In Computer-
Aided Verification (CAV) (computer-aided verification (cav)
ed.). https://www.microsoft.com/en-us/research/publication/
corral-a-solver-for-reachability-modulo-theories-2/

[6] K. Rustan M. Leino. 2008. This is Boogie 2. (June 2008). https://www.
microsoft.com/en-us/research/publication/this-is-boogie-2-2/

[7] Mozilla. 2022. CacheIROps.yaml file revisions. https://hg.mozilla.org/
mozilla-central/log/tip/js/src/jit/CacheIROps.yaml

[8] Mozilla. 2022. LIROps.yaml file revisions. https://hg.mozilla.org/
mozilla-central/log/tip/js/src/jit/LIROps.yaml

[9] Mozilla. 2022. MIROps.yaml file revisions. https://hg.mozilla.org/
mozilla-central/log/tip/js/src/jit/MIROps.yaml

[10] Johnathan Norman. 2021. https://microsoftedge.github.io/edgevr/
posts/Super-Duper-Secure-Mode/

[11] Assaf Sion. 2021. The mysterious realm of JavaScriptCore.
https://www.cyberark.com/resources/threat-research-blog/
the-mysterious-realm-of-javascriptcore

3

https://hacks.mozilla.org/2020/11/warp-improved-js-performance-in-firefox-83/
https://hacks.mozilla.org/2020/11/warp-improved-js-performance-in-firefox-83/
https://docs.google.com/document/d/13CwgSL4yawxuYg3iNlM-4ZPCB8RgJya6b8H_E2F-Aek/edit
https://docs.google.com/document/d/13CwgSL4yawxuYg3iNlM-4ZPCB8RgJya6b8H_E2F-Aek/edit
https://www.microsoft.com/en-us/research/publication/reachability-modulo-theories/
https://www.microsoft.com/en-us/research/publication/reachability-modulo-theories/
https://www.microsoft.com/en-us/research/publication/corral-a-solver-for-reachability-modulo-theories-2/
https://www.microsoft.com/en-us/research/publication/corral-a-solver-for-reachability-modulo-theories-2/
https://www.microsoft.com/en-us/research/publication/this-is-boogie-2-2/
https://www.microsoft.com/en-us/research/publication/this-is-boogie-2-2/
https://hg.mozilla.org/mozilla-central/log/tip/js/src/jit/CacheIROps.yaml
https://hg.mozilla.org/mozilla-central/log/tip/js/src/jit/CacheIROps.yaml
https://hg.mozilla.org/mozilla-central/log/tip/js/src/jit/LIROps.yaml
https://hg.mozilla.org/mozilla-central/log/tip/js/src/jit/LIROps.yaml
https://hg.mozilla.org/mozilla-central/log/tip/js/src/jit/MIROps.yaml
https://hg.mozilla.org/mozilla-central/log/tip/js/src/jit/MIROps.yaml
https://microsoftedge.github.io/edgevr/posts/Super-Duper-Secure-Mode/
https://microsoftedge.github.io/edgevr/posts/Super-Duper-Secure-Mode/
https://www.cyberark.com/resources/threat-research-blog/the-mysterious-realm-of-javascriptcore
https://www.cyberark.com/resources/threat-research-blog/the-mysterious-realm-of-javascriptcore

	Abstract
	1 Introduction
	2 The Cachet DSL
	References

